“This is an area on Mount Sharp where Curiosity will go,” said Mast am principal investigator Michael Malign, of Malign Space Science Systems in San Diego. “Those layers are our ultimate objective. The dark dune field is between us and those layers. In front of the dark sand you see redder sand, with a different composition suggested by its different color. The rocks in the foreground show diversity – some rounded, some angular, with different histories. This is a very rich geological site to look at and eventually to drive through.” A drive early Monday placed Curiosity directly over a patch where one of the spacecraft’s landing engines scoured away a few inches of gravelly soil and exposed underlying rock. Researchers plan to use a neutron-shooting instrument on the rover to check for water molecules bound into minerals at this partially excavated target. The rover team reported the results of a test on Curiosity’s Sample Analysis at Mars (SAM) instrument, which can measure the composition of samples of atmosphere, powdered rock or soil. The amount of air from Earth’s atmosphere remaining in the instrument after Curiosity’s launch was more than expected, so a difference in pressure on either side of tiny pumps led SAM operators to stop pumping out the remaining Earth air as a precaution. The pumps subsequently worked, and a chemical analysis was completed on a sample of Earth air. “As a test of the instrument, the results are beautiful confirmation of the sensitivities for identifying the gases present,” said SAM principal investigator Paul Mahaffy of NASA’s Goddard Space Flight Center in Greenbelt, Md. “We’re happy with this test and we’re looking forward to the next run in a few days when we can get Mars data.” Curiosity already is returning more data from the Martian surface than have all of NASA’s earlier rovers combined.