new materials boost promise of hydrogen fuel
Last Updated : GMT 06:49:16
Arab Today, arab today
Arab Today, arab today
Last Updated : GMT 06:49:16
Arab Today, arab today

New materials boost promise of hydrogen fuel

Arab Today, arab today

Arab Today, arab today New materials boost promise of hydrogen fuel

Tehran - FNA

Generating electricity is not the only way to turn sunlight into energy we can use on demand. The sun can also drive reactions to create chemical fuels, such as hydrogen, that can in turn power cars, trucks and trains. The trouble with solar fuel production is the cost of producing the sun-capturing semiconductors and the catalysts to generate fuel. The most efficient materials are far too expensive to produce fuel at a price that can compete with gasoline. "In order to make commercially viable devices for solar fuel production, the material and the processing costs should be reduced significantly while achieving a high solar-to-fuel conversion efficiency," says Kyoung-Shin Choi, a chemistry professor at the University of Wisconsin-Madison. In a study published last week in the journal Science, Choi and postdoctoral researcher Tae Woo Kim combined cheap, oxide-based materials to split water into hydrogen and oxygen gases using solar energy with a solar-to-hydrogen conversion efficiency of 1.7 percent, the highest reported for any oxide-based photoelectrode system. Choi created solar cells from bismuth vanadate using electrodeposition -- the same process employed to make gold-plated jewelry or surface-coat car bodies -- to boost the compound's surface area to a remarkable 32 square meters for each gram. "Without fancy equipment, high temperature or high pressure, we made a nanoporous semiconductor of very tiny particles that have a high surface area," says Choi, whose work is supported by the National Science Foundation. "More surface area means more contact area with water, and, therefore, more efficient water splitting." Bismuth vanadate needs a hand in speeding the reaction that produces fuel, and that's where the paired catalysts come in. While there are many research groups working on the development of photoelectric semiconductors, and many working on the development of water-splitting catalysts, according to Choi, the semiconductor-catalyst junction gets relatively little attention. "The problem is, in the end you have to put them together," she says. "Even if you have the best semiconductor in the world and the best catalyst in the world, their overall efficiency can be limited by the semiconductor-catalyst interface." Choi and Kim exploited a pair of cheap and somewhat flawed catalysts -- iron oxide and nickel oxide -- by stacking them on the bismuth vanadate to take advantage of their relative strengths. "Since no one catalyst can make a good interface with both the semiconductor and the water that is our reactant, we choose to split that work into two parts," Choi says. "The iron oxide makes a good junction with bismuth vanadate, and the nickel oxide makes a good catalytic interface with water. So we use them together." The dual-layer catalyst design enabled simultaneous optimization of semiconductor-catalyst junction and catalyst-water junction. "Combining this cheap catalyst duo with our nanoporous high surface area semiconductor electrode resulted in the construction of an inexpensive all oxide-based photoelectrode system with a record high efficiency," Choi says. She expects the basic work done to prove the efficiency enhancement by nanoporous bismuth vanadate electrode and dual catalyst layers will provide labs around the world with fodder for leaps forward. "Other researchers studying different types of semiconductors or different types of catalysts can start to use this approach to identify which combinations of materials can be even more efficient," says Choi, whose lab is already tweaking their design. "Which some engineering, the efficiency we achieved could be further improved very fast."

arabstoday
arabstoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

new materials boost promise of hydrogen fuel new materials boost promise of hydrogen fuel

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

new materials boost promise of hydrogen fuel new materials boost promise of hydrogen fuel

 



GMT 12:05 2017 Thursday ,20 April

Iran FM slams 'worn-out' US nuclear accusations

GMT 18:04 2017 Wednesday ,18 October

Cash-loving Japanese savers opt to play it safe

GMT 16:33 2018 Friday ,07 December

Lavrov comments on Greek PM’s visit to Moscow

GMT 21:06 2016 Sunday ,28 February

Grave violations, human right abuses in Libya

GMT 07:07 2017 Sunday ,12 February

Night-time quake kills at least 6 in Philippines

GMT 22:20 2017 Sunday ,01 January

Egypt decries Istanbul nightclub attack

GMT 10:45 2017 Wednesday ,11 October

Tears in Damascus as Syria misses shot at World Cup

GMT 05:32 2017 Tuesday ,14 February

Ajman Crown Prince receives Belgian Foreign Minister

GMT 09:55 2017 Saturday ,21 January

Actress Jenny Esper keen to consider scenarios
Arab Today, arab today
 
 Arab Today Facebook,arab today facebook  Arab Today Twitter,arab today twitter Arab Today Rss,arab today rss  Arab Today Youtube,arab today youtube  Arab Today Youtube,arab today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

arabstoday arabstoday arabstoday arabstoday
arabstoday arabstoday arabstoday
arabstoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
arabstoday, Arabstoday, Arabstoday