researchers discovered how plants set angles of their branches
Last Updated : GMT 06:49:16
Arab Today, arab today
Arab Today, arab today
Last Updated : GMT 06:49:16
Arab Today, arab today

Researchers discovered how plants set angles of their branches

Arab Today, arab today

Arab Today, arab today Researchers discovered how plants set angles of their branches

Tehran - FNA

Researchers at the University of Leeds have discovered how plants set the angles of their branches. While the other principle features governing the architecture of plants such as the control of the number of branches and positioning around the main shoot are now well understood, scientists have long puzzled over how plants set and maintain the angle of their lateral branches relative to gravity. The mechanism is fundamental to understanding the shape of the plants around us: explaining how, for instance, a young Lombardy poplar sends its branches up close to the vertical while an oak sapling's spread is much flatter. Dr Stefan Kepinski, senior lecturer in the University of Leeds' Faculty of Biological Sciences and lead author of a paper in the journal Current Biology that gets to the bottom of the mystery, said: "We began working on this after a train commute into Leeds. Looking out of the window, I was struck by the fact that the way we recognise tree and other plant species from a distance is largely informed by the angle at which their branches grow. "These characteristic angles are all around us and the same thing is happening underground; different varieties within species often have very distinct root-system architectures that are determined mainly by the growth angle of lateral roots," Kepinski said. The apparently simple puzzle of how a plant sets and maintains these angles in its architecture is complicated by the fact that the angle of root and shoot branches is not usually set relative to the main root or stem from which they grow but relative to gravity. If a plant is put on its side, these branches will begin a phase of bending growth, known as gravitropism, that reorientates them back toward their original angle of growth relative to gravity. In the case of the main root or stem, which grows upright, the mechanism is well understood: gravity sensing cells called statocytes detect that the plant has been tilted, prompting an increase in the movement of a growth-regulating hormone called auxin to the lower side of the shoot or root and driving upward growth in the shoot and downward growth in the root. When growing vertically again, the statocytes stop sending more auxin to one side than the other and the bending growth stops. The conundrum for the researchers was that many of the angles in branch and root architectures are at an angle to gravity, rather than being completely upright. Scientists did not understand how plants were able to set, relative to gravity, the particular non-vertical angle of growth for their branches -- known as their "gravitropic set-point angle" -- that determines their architecture. Dr Kepinski said: "We have found that another growth component -- the 'anti-gravitropic offset' -- counteracts the normal gravitropic growth in these lateral branches. This offset mechanism sustains growth on the other side of a branch from the gravity-sensitive growth and prevents the branch from being moved beyond a set angle to the vertical. It turns out that this countervailing growth is also driven by auxin, the same hormone that causes gravity responsive growth on the lower side of the branch." Branches that are growing close to the vertical have a weak anti-gravitropic offset, while in branches that are growing out at shallow angles away from the vertical the anti-gravitropic offset is relatively strong. Dr Kepinski added: "You can compare it to the way a tank or paddle steamer is steered. If you want to go one direction, you speed up the track or paddle on the other side. If you want to straighten up, you balance the speeds -- or in our case the 'speed' of growth on either side of the branch. In a given non-vertical branch, the anti-gravitropic offset is constant, while gravity responsive growth increases in magnitude according to how far the branch is away from the vertical, generating a robust system for maintaining a whole array of branch angles." The Leeds team proved the presence of the offset by using a clinostat, which slowly rotates a plant growing on its side, thereby withdrawing a stable gravity reference and enabling the researchers to monitor the anti-gravitropic offset mechanism working unopposed by a coordinated gravitropic response. Under these conditions they observed that shoot and root branches displayed an outward bending growth, away from the main root and shoot that would normally be masked by the interaction with gravity-sensitive growth. Dr Kepinski said: "The angle of growth of branches is an exceptionally important adaptation because it determines the plant's capacity to capture resource above and below ground. Depending on what sort of soil a plant is in, it might be beneficial to be foraging for nutrients in the top soil or to be going deeper. Similarly, in the shoot, a plant might gain an advantage from having more steeply pitched branches to avoid shading from neighbouring plants. Until now, nobody really knew how non-vertical growth angles, referenced to gravity like this, were set and maintained." He added: "These insights are important for breeding and biotechnological approaches to crop improvement because breeders and seed companies want to be able to alter plant architecture to optimise the performance of crops. For example, lateral root growth angle has been shown to be critical for increasing nutrient uptake in both broadleaf and cereal crop species. Our findings provide tools and approaches to help meet these crop improvement challenges." The team used the flowering plant Arabidopsis thaliana (thale cress), as well as pea, bean and rice plants in their experiments, observing the same results. Kepinski expects the same mechanism to be observed in larger plants and young tree seedlings. In older trees, the mechanisms driving gravity sensitive growth in woody tissues are different to those in non-woody plants. Nevertheless, Kepinski says the same general principles may apply.  

arabstoday
arabstoday

Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

researchers discovered how plants set angles of their branches researchers discovered how plants set angles of their branches

 



Name *

E-mail *

Comment Title*

Comment *

: Characters Left

Mandatory *

Terms of use

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults.

I agree with the Terms of Use

Security Code*

researchers discovered how plants set angles of their branches researchers discovered how plants set angles of their branches

 



GMT 16:47 2017 Wednesday ,29 March

Asala feels more nostalgic for Syria

GMT 06:41 2014 Monday ,01 September

July 22 - August 22

GMT 02:17 2017 Monday ,23 October

Feb20/Mar20

GMT 12:58 2014 Tuesday ,03 June

NuBo to launch Hair Growth Factor

GMT 11:39 2011 Saturday ,24 September

New York city ballet“Ocean’s Kingdom”

GMT 02:07 2017 Sunday ,24 September

May22nd-June21st

GMT 02:06 2017 Thursday ,28 September

August24th-September23rd

GMT 22:08 2017 Sunday ,19 November

Bahraini women’s empowerment discussed

GMT 15:32 2017 Tuesday ,28 February

Gumtree bans donkey sales in S.Africa over skin trade

GMT 20:48 2018 Friday ,14 September

Volkswagen to end production of the Beetle next year

GMT 13:36 2015 Thursday ,19 March

Sabkhas ideal source of energy

GMT 08:31 2014 Friday ,16 May

Interior design living room

GMT 10:01 2014 Friday ,06 June

February 18 - March 19

GMT 13:11 2015 Wednesday ,18 March

Britain moving 'from austerity to prosperity'
Arab Today, arab today
 
 Arab Today Facebook,arab today facebook  Arab Today Twitter,arab today twitter Arab Today Rss,arab today rss  Arab Today Youtube,arab today youtube  Arab Today Youtube,arab today youtube

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2021 ©

arabstoday arabstoday arabstoday arabstoday
arabstoday arabstoday arabstoday
arabstoday
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
arabstoday, Arabstoday, Arabstoday